Monday, February 26, 2024

Quantum field theory vs. String theory.





***************************'


Are gravitons rolled photons? 


In some models, those superstrings are the photons or the waves or wave-shaped photons that turn into rolls. If that quantum field is like a roll that thing can explain many things. 

And this can be the mysterious graviton. The photon that is turned into the tunnel will impact the structure and then energy flows into that quantum tunnel. 


******************************

The quantum field theory and string theory can explain things, like photons' ability to change their shape between wave motion and particle. 

The quantum field theory and string theory are different. Or they describe the different things. And the thing is that the quantum field theory is difficult to fit into the quantum field theory. And the main problem is that the scale of those theories is different.

The quantum field theory is the theory about quantum fields that surround particles. And the string theory is the theory about things inside that quantum field. The string theory is the theory that some kind of superstrings are things that make the material from the wave-particle duality. 

There is the suggestion that the superstring is the wormhole. And the photon's particle-wave property is one thing that is proposed as evidence of the superstring's existence. The idea is that when the photon or its wave movement form travels in the universe, it sometimes hits with a superstring. That thing presses the wave movement into the wave-shaped wrinkles. That causes the photon to turn shorter. Then photons can slip into the superstring. And turn back into wave movement. And that thing just pulls photons straight. 

Another thing is the photon's energy stability. In some models, the photon travels in the universe. And quantum fields make the shockwave around that photon. In the field model. That shockwave or bubble is the thing, that we call a photon. 

Then those quantum fields or quantum strings connect back in the photon, and then that thing pushes the photon forward. There is a model that a superstring travels through a photon, or photons travel around that string. And then, the photon transports energy into the superstring. Then that structure transports energy back to the photon. 


Same way. When we think about the Theory of special relativity, it feels right because observing large entirety is easier, than observing small systems. 

The theory of general relativity becomes more effective when we close to the strong gravitational fields. The reason why the Theory of Special relativity is easier to prove than the Theory of general relativity is that the Theory of Special relativity describes or handles larger entities. We must have a certain accuracy. That we can start to use the Theory of general relativity. 

The theory of general relativity is suitable near the massive gravitational centers. But to observe that thing, we must stand out from that center's gravitational pothole. 

And if we want to make observations about the systems. And measure changes in the system, we must be outside it. If we are middle of the system we are part of it. And when something happens that thing happens to us and the system. At the same time.  Things like speed and energy levels are relative. 

The energy level is relative to its environment. And if the observer is in a system where the energy level rises, let's say about 1000 times, the observer's and its environment's energy level rises the same way. The observer will not see anything special. That thing requires that the system will not start to leak energy away. 

When we are in a hot room energy travels to the environment from the the room's wall. That thing causes energy flow in the room. Energy flow and differences in energy levels in our body are the things that we feel as heat. If we want to increase energy levels to deny aging we should raise energy levels in every single particle in our body and our environment. Precise at the same time. If that thing is not done, energy flow destroys the material. 

That means standing energy does nothing. The energy that flows makes things work. This is the main problem in things like interstellar flight. We can raise the energy level in the craft very high. 

And that stops aging. But the universe expands. That thing causes that energy level to decrease. When our astronaut steps out from the craft, that thing causes energy to flow out from the astronaut, and it causes an explosion. The outflowing energy just rips the astronaut or craft in pieces. And that is one version of the reasons, why interstellar travel is very difficult. 


Spiral structures in optical and gravitational lenses.



"Researchers have developed a new type of lens that uses a spiral-shaped surface to maintain a clear focus at different distances in varying light conditions. Credit: Laurent Galinier" (ScitechDaily, Replacing Traditional Lenses: Scientists Develop Spiral-Shaped Lens for Clear Vision Across Distances and Lighting Conditions).

 Is it possible that the spiral-shaped magnetic field can form in the glass lens, which gives it a new ability? If that is possible that gives begin into the new types of multisensors. 

The new spiral lenses can revolutionize the optics. That structure can used to make models for systems that can focus on different wavelengths. 

The new spiral-shaped lens makes it possible to make clear vision from distant objects. Those things help to use optics as a model of things, like magnetic and gravitational lenses. 

This kind of spiral lens can be more effective than a regular lens. And that makes it possible to create more effective optics than ever before. The nano-glass can also make it possible to use the same technology in instruments that observe microcosmos. 

The thing with this shape is that the wave movement always acts the same way. And that makes it possible to create the same effect using nano- or quantum-scale structures. And that thing makes it possible. The spiral-shaped gravity waves can create shapes that lens gamma or even gravitational waves. Gravitational waves interact with both, other gravity waves and gamma rays. 

There are gravitational lenses also on a local scale. Black holes and neutron stars also act as gravitational lenses. Their effect on gravitational interaction might be more powerful than we believe. When we think of galaxy-scale gravitational lenses, those miniature lenses inside that structure are like grinding errors in glass lenses. 



Can the spiral structure of gravity waves interact in the same way, as a spiral optical lens? It's possible that a spiral nanotube where standing gamma rays can. Allows to create the new types of gamma-microscopes. 


We believe that in some models. The gravity waves always interact in the same way. And that thing makes it possible to benefit gravitational spiral as a model of gravitational lensing on a micro-scale. But in that case, we believe that all gravity waves have the same wavelength. Gravity waves may have two different wavelengths. Another interacts with the smallest particles in atoms. And then another thing interacts with quantum fields around the atom. 

If that second gravitational effect is real, we can model this hypothetical long-wave gravitational wave and that interaction as the model where the gravitational effect pushes the quantum field around the atom in one direction. And that thing forms the bubble or lower energy area in the atom's quantum field. That thing causes all particles in the atom to travel in that direction. So could those gravitational waves interact in different directions?  



"Collisions of heavy ions generate an immensely strong electromagnetic field. Scientists investigate traces of this powerful electromagnetic field in the quark-gluon plasma (QGP), a state where quarks and gluons are liberated from the colliding protons and neutrons. Credit: Tiffany Bowman and Jen Abramowitz/Brookhaven National Laboratory" (ScitechDaily, Unlocking the Nuclear Secrets of the Universe’s Strongest Magnetic Fields)


The spiral-shaped magnetic fields can focus the magnetic fields and radio waves at the same point similar way to some optical lenses. 


The reason why researchers are researching the most powerful magnetic fields in the universe is that things like neutron stars act like generators. The fast-spinning neutron stars form an ultra-powerful electromagnetic field. And the main thing is that this structure transforms kinetic energy into electric power. The thing is that when the particles of that fast-spinning object's shell move very fast they harvest electromagnetic fields. And then. That structure transforms that energy into the electromagnetic field.

The reason for that is simple. Neutron stars are not slight. Their surface is full of small nodes that are neutrons. When neutron star spins there is electromagnetic low pressure between those nodes. And that makes this particle possible. That it can harvest lots of electromagnetic energy from its environment. 

There is a theory that all electromagnetic fields or fields form in particles, and those particle's size determines what type of field it forms. So it's possible. That the extremely dense power field can interact with other field types. In that model extremely powerful magnetic field can interact straight with gravity. They both are wave motion, but their wavelength are different. 


https://scitechdaily.com/replacing-traditional-lenses-scientists-develop-spiral-shaped-lens-for-clear-vision-across-distances-and-lighting-conditions/


https://scitechdaily.com/unlocking-the-nuclear-secrets-of-the-universes-strongest-magnetic-fields/

Sunday, February 25, 2024

The ability to calculate photons is one of the key elements in quantum computer's error detection.


"Advancements in superconducting nanostrip detectors have achieved high-fidelity, true-photon-number resolution up to 10 photons, marking a significant leap in quantum information technology. Credit: SciTechDaily.com" (ScitechDaily, Quantum Precision Unleashed: Expanded Superconducting Strips for Enhanced Photon-Counting)



Quantum precision makes it possible to count photons. And why photon counting is necessary? The quantum computers must know the number of photons. If it must create quantum entanglements using those photons. Without the ability to count the photons or anything else.

The quantum system is used for quantum entanglements. The quantum computer is unable to operate safely. In quantum computers, data travels between superpositioned and entangled particle pairs. And without knowing how many particles are in the superposition. The quantum computer is not able to operate. 

The thing that forms the power of quantum computers is that the system handles information in states. Or multiple layers at the same time. The quantum computer shares a mission with those layers. In that system, the system can handle in the same time multiple data rows. The quantum computer must not stop when it takes the next mission. 

And the thing that guarantees its safety is that data is stored in a physical structure. That means that for stealing data from the quantum system the attacker must know the frequency of the quantum entanglement. The requirement for superposition and entanglement is that two particles oscillate with the same frequency. And the other particle is at the lower energy level. 


*********************************************

The next-generation quantum computers can benefit photons' particle-wave nature. 


In regular quantum systems photons are trapped in the frame and then information will be transported to them using that frame. In some visions, the photon itself can turn into wave movement. Then that wave movement or photon string can transport information over the quantum system. In that system, a quantum computer transports information into the particle-form photon. 

And then. It turns photons into wave movement. That thing removes the need to create quantum entanglement between two particles. When information travels in one particle, that thing makes the system less sensitive to outside effects. But the problem is that the quantum computer should fully control the process that turns photons from particle to wave and backward. Without that ability, the system is unable to work. 

The ability to stop light means the quantum computers can stop photon clouds. This is one answer for the quantum computing systems. The ability to stop photon clouds means. The system can make multiple quantum entanglements using those stopped photons. The ability to send identical information flow through the quantum entanglements helps for error detection. 

The ability to measure time with very high accuracy also helps to find if there are some kind of outside errors. The idea is that the speed of things like cosmic rays and gravity waves is not unlimited. There is a difference between times when an error like FRB (Fast Radio Burst) hits quantum entanglements. That thing affects the quantum entanglements energy levels. The qubit transports information in a nanotube, that can also detect the changes in energy levels in its environment. 

The error detection system can see if there is a similar energy rise simultaneously in the quantum channels. The system can measure energy levels straight in the quantum entanglements. Or if quantum entanglements or qubits travel in the nanotube the system can detect changes in those nanotube's energy levels. 


*********************************************


However, the system is not safe if it cannot calculate those particles. In some models, the quantum computer can corrupted if there are extra photons. Those non-controlled photons can destroy the quantum entanglements. Or the system can misinterpret them as the qubits. And that thing causes errors. So the system must calculate the number of the particles that are under control. 

If the high-energy photon transfers a non-controlled effect into the quantum system, that thing destroys information. There are two ways to react to those non-controlled photons. The system can just let them without notice. Or it can shoot them away using electromagnetic wave movement. 


https://scitechdaily.com/quantum-precision-unleashed-expanded-superconducting-strips-for-enhanced-photon-counting/

Saturday, February 24, 2024

The new AI, lasers, graphenes, and room-temperature superconductivity are the next-generation tools for quantum processing.


"A quantum scientist has developed a method to enhance quantum simulators, devices crucial for exploring unsolved problems in quantum physics. This advancement could significantly impact various fields, including finance, encryption, and data storage, by making quantum simulators more controllable and versatile. Credit: SciTechDaily.com" (ScitechDaily, The Dual-Laser Revolution: A New Design for Quantum Computers)

The dual-laser system is the new tool for quantum computing. The quantum microchips can use laser rays for data transmission. In three-state qubits, there is one laser ray. That tells when the system is on. And two other laser rays that transmit states one and two. The calculation of the number of states begins from zero. 

Another way is to measure the state or energy level of the laser ray. And the other tells if the system is on. There could be an electric system that gives the quantum computer's AI-based operating system prediction if the system will turn off. And that helps the quantum computer predict that the system will shut down. 


"The fractional quantum Hall effect has generally been seen under very high magnetic fields, but MIT physicists have now observed it in simple graphene. In a five-layer graphene/hexagonal boron nitride (hBN) moire superlattice, electrons (blue ball) interact with each other strongly and behave as if they are broken into fractional charges. Credit: Sampson Wilcox, RLE" (ScitechDaily, Fractional Electrons: MIT’s New Graphene Breakthrough Is Shaping the Future of Quantum Computing)

In a binary system, the first laser sends bit one. And the second laser transmits zero bit. In quantum computers, the photons that transport information can be shot in the stable laser rays. 

The AI that can share data handling missions into pieces and the multiple workstations that can be supercomputers or some school's computers that networked into one entirety can help to solve the quantum mysteries. In those systems, every single workstation is one state of qubit. 



"An international research team has made a pivotal discovery in high-temperature superconductivity by quantifying the pseudogap pairing in fermionic lithium atoms. This discovery not only deepens our understanding of quantum superfluidity but also holds promise for enhancing global energy efficiency through advancements in computing, storage, and sensor technologies. Credit: SciTechDaily.com" (ScitechDaily, Quantum Breakthrough in High-Temperature Superconductivity)

The system works using TCP/IP protocol. That means the system can transmit the data as segmented rows. Every single data segment has a number. Then the system drives those data segments into a qubit. The remarkable thing is that the same data row model can turn into a DNA molecule. In that model, certain DNA sequences form a certain data segment. In some sources, those data segments are called data frames. But in this text, data frames are called data segments. 

So the TCP/IP protocol makes it possible to read chemical qubits. In that system, the data row is tuned into chemical form into the DNA. The system must just turn those base pairs into electric data. The system can use lasers, electron microscopes, laser spectrometers, and other kinds of tools. To decode information from the DNA into a form that the AI can understand it. 


"Illustration of a quantum simulator with atoms trapped into a square lattice with lasers. The small spheres at the corners are atoms in their lowest energy state. The ones inside a blue sphere are exited (higher in energy) by the first laser, the ones inside yellow spheres are excited by the second laser (even more higher in energy). Credit: TU Delft" (ScitechDaily, The Dual-Laser Revolution: A New Design for Quantum Computers)


Graphene can be the next-generation tool for quantum computers. In that system, the nanotubes can act as electron traps. In the most advanced version. There could be some atoms hovering in those nanotube pillars. Then laser ray can turn that atom's electron shells into a certain position. In some models, the most out electrons will turn against each other. And then the system will create superposition and entanglement between those most out electrons. 

Then laser rays will shoot to those electrons. That thing forms an electromagnetic shadow that can lock photons in a certain position. Then the system can make quantum entanglement between those photons. The simpler way is to create quantum entanglement and superpositions straight between those electrons. 

In some models, the Hall field can be used to connect the electrons. The field will act as the power field between superpositioned and entangled electrons. The laser rays can control that field. So that the system can used in solid-state quantum computers. The data can travel in the Hall field between superconducting wires. 


"Altermagnetism introduces a third magnetic phase, combining the non-magnetization of antiferromagnets with the strong spin-dependent phenomena of ferromagnets. Discovered through international collaboration, this new phase offers significant potential for spintronics, bridging previous gaps in magnetic material applications. Credit: SciTechDaily.com" (ScitechDaily, New Fundamental Physics Uncovered – Experiments Prove the Existence of a New Type of Magnetism)


There is a breakthrough in room-temperature superconductivity. And the new type of magnetism is called " an altered magnetic phenomenon" or "altermagnetism". Can also offer a new way to make superconducting wires. It's possible. The "altermagnetic" field can altermagnetic material's atoms close together. And that thing removes the crossing hall field from those atoms. The remarkable thing about altermagnetism is that. There is no magnetic field outside that material. If atoms pulled close enough. That thing makes it possible. That the atom's cores and electron fields would be under the same quantum field. 

A portable or solid quantum computer system requires superconductivity. This means that the data must stay in the same form while it travels through the wire. In regular superconductors, the extremely low temperature turns atoms too close to each other. Then the system stabilizes those atoms and removes the Hall effect or potential barrier, (also known as the "potential wall or Hall field") out from between those atoms. That thing makes electricity travel without resistance. 

The crossing Hall field is the thing that destroys data. But if the Hall field is lengthwise or parallel to the conductor. That thing can close the magnetic field in and out from it. And in that case, the Hall field can protect the information that travels into wires. In this case, the internal magnetic field can pull those atoms close to each other. And that could remove the crossing Hall field. 


https://scitechdaily.com/the-dual-laser-revolution-a-new-design-for-quantum-computers/


https://scitechdaily.com/fractional-electrons-mits-new-graphene-breakthrough-is-shaping-the-future-of-quantum-computing/


https://scitechdaily.com/new-fundamental-physics-uncovered-experiments-prove-the-existence-of-a-new-type-of-magnetism/


https://scitechdaily.com/quantum-breakthrough-in-high-temperature-superconductivity/


https://en.wikipedia.org/wiki/Altermagnetism

https://en.wikipedia.org/wiki/Internet_protocol_suite

Thursday, February 22, 2024

There is a suggestion that dark matter may have deformed another universe.





The researchers suggest that dark matter is the deformed dark universe. Or in the most exciting theories, dark matter is the dark universe inside our universe. In that theory dark matter is entangled with the visible material. That theory is taken from the multiverse theory. There our visible universe is one of many universes. The other universes can be invisible because their electrons and quarks are different sizes. And that thing makes those other universes invisible to us. 

Another hypothesis is that the hypothetical other universes send radiation that radiation from our universe pushes away. Things like invisible 9th. planet causes ideas that maybe there is another universe in our universe. The thing that makes the mysterious dark matter interesting is that. The dark matter can form structures that can be similar to visible material. But those structures are not visible. 

The multiverse theory is not new. The thing in that theory is that there are multiple universes at this moment, in parallel universe theory those multi-universes have different energy levels. And some of them are in another dimension. In that model, the energy levels between those universes can be so big, that they cannot interact. With each other. Or those universes send radiation that our universe's radiation whips away. 

So those hypothetical other universes send radiation that is like cosmic hum. That is the monotonic radio signal that cannot travel across the oort could and the sun's impact wave. 

Plasma flow from the sun with radio waves from the sun will not let that hum come to our solar system. Voyager spacecraft found that cosmic hum. 

The thing is that some theorists say that there should be some kind of impact wave around our universe. If outside our universe is nothing, or a great, real vacuum, there are no electromagnetic fields, radio waves, or any other wave movement, that vacuum should pull all material into straight wave movement. 


"Although we now know that light, as well as all quanta, can be described as both a wave and a particle under specific physical circumstances, the debate over whether light was wave-like or corpuscle-like goes all the way back to the 1600s. In many ways, both sides of that ancient argument can lay claim to being correct today." (Big Think, The surprising origins of wave-particle duality)

And that causes the mass of the universe should decrease very fast. So if there is some kind of wave movement outside the universe there must be some kind of source for that wave movement. 

And if the wave-particle duality formed our universe, that thing requires that there is more than one source for those waves that cross and form the material and dark matter. 

In some models, the dark matter is the crossing wave movement that forms so-called virtual particles. In that model dark matter particles are like standing waves. And when a photon impacts those virtual particles it blows it away. 

Nobody has seen dark matter yet. That's why all things written about WIMPs (Weakly Interacting Massive Particles) are purely hypothetical. But if there are some kind of WIMPs that look like fermions, that thing can form the new model of the material. 

Most of the mass of the atoms is in hadrons or baryons called protons and neutrons. The baryons contain quarks. And there is a quantum field around those quarks. In that model, dark matter would have similar structures with visible materials. 

If dark matter is similar material with visible material, and some still unknown fermions form this material, those dark matter hadrons may have quantum fields there quarks are somehow looser in attachment to each other. In that model, the photon that impacts those quarks pushes them away. Or if the WIMP's structure is not so tight that it can cause reflection. If the photon impacts with WIMP that takes the photon's energy in it. 

Then that particle has spin, it can transmit that energy off from its poles. Or if the WIMP's structure is loose, that thing can cause the internal structure of WIMP is wobble. And that causes weak or slow energy transfer out from its structure. In that model, the hypothetical WIMP is like a rubber structure that is too low energy that we can see that interaction. 


https://bigthink.com/starts-with-a-bang/surprising-origins-wave-particle-duality/


https://futurism.com/the-byte/dark-matter-mirror-universe


https://en.wikipedia.org/wiki/Multiverse


https://en.wikipedia.org/wiki/Weakly_interacting_massive_particle


https://learningmachines9.wordpress.com/2024/02/22/there-is-a-suggestion-that-dark-matter-may-have-deformed-another-universe/

The quantum computers are not ready yet.

 


"Researchers from São Paulo State University have developed a new method to quantify quantum entanglement, challenging traditional theories and potentially advancing quantum computing. This study emphasizes the importance of entanglement in enhancing processing power and offers insights into the limitations of classical computing, highlighting the rapid progress of quantum technology led by companies like Google and IBM". (ScitechDaily, Challenging Traditional Theories – Physicists Develop New Method To Quantify Quantum Entanglement)

Physicists develop new Method to quantify quantum entanglement. 

They just must put down the Hellman-Feynman theorem. "The study showed how the Hellmann-Feynman theorem breaks down under specific conditions. The theorem describes the dependence of the system’s own energy on a control parameter and is a key part of quantum mechanics used across disciplines from quantum chemistry to particle physics. (ScitechDaily, Challenging Traditional Theories – Physicists Develop New Method To Quantify Quantum Entanglement)

“Simply put, we propose a quantum analog of the Grüneisen parameter widely used in thermodynamics to explore finite temperature and quantum critical points. In our proposal, the quantum Grüneisen parameter quantifies entanglement, or von Neumann entropy, in relation to a control parameter, which may be a magnetic field or a certain level of pressure, for example,” ”(ScitechDaily, Challenging Traditional Theories – Physicists Develop New Method To Quantify Quantum Entanglement)

Valdeci Mariano de Souza, last author of the article and a professor at IGCE-UNESP, told Agência FAPESP. “Using our proposal, we demonstrate that entanglement will be maximized in the vicinity of quantum critical points and that the Hellmann-Feynman theorem breaks down at a critical point. (ScitechDaily, Challenging Traditional Theories – Physicists Develop New Method To Quantify Quantum Entanglement)

The problem with quantum computers and quantum entanglement is that the entropy level rises in the system. The reason for that is the "non-targeted" or non-controlled energy. That thing is seen in all different size quantum systems from the simplest quantum entanglements to the extremely complex quantum entreties. The problem with entropy is that increases the non-controlled effects in the system. In the smallest and simplest quantum system, it transports energy between the energy bridges in quantum entanglement. 

While researchers make things like error detection for quantum computers, they are in trouble. That system is 47 years faster than any other computer. A quantum computer calculates in seconds calculations, which takes 47 years using regular computers. And that thing makes it problematic to detect errors in the quantum system. The quantum computer is more sensitive to outside effects like fast radio bursts than regular computers. And that limits its use. 

The problem with error detection is that the only system that can produce information with the same power as the quantum computer is another quantum computer. The receiving system can send a copy of the received qubit back to the transmitting system. 

Then the transmitting system can check the information that travels back into the quantum computer. To make sure that the receiver gets is identical to the data units the transmitting system sends. 

This is a quantum version of the TCP/IP protocol. But how to make sure that information that travels back is identic with the transmitted information? And how to send information that passes the receiver system In the case that there are corrupted qubits in the system. Theoretically thinking the system should transport information faster than it sends it. And that seems impossible. 

The system can send qubits back through the nanotube or electromagnetic wormhole. The main thing in those systems is that they should remove the potential barriers from the qubit's route. The potential barriers or Hall effect is the thing that destroys the information on the qubit. 



"Theoretical physicists have found a way to potentially enhance quantum computer chips’ memory capabilities by ensuring information remains organized, similar to perpetually swirling coffee creamer, defying traditional physics’ expectations". (ScitechDaily, Quantum Breakthrough: New Method Preserves Information Against All Odds)

The ability to store information in the particles is the thing that can be the most remarkable in quantum computing. The system can shoot this particle through the line there are no potential barriers that can disturb superpositions and destroy information. 



The quantum computers are not ready yet. 


The problem with quantum computers is that cosmic rays like FRBs and even gravitational radiation can disturb qubits. One of the solutions to that problem is to follow cosmic radiation and XRBs, GRBs, and FRBs. If there is some kind of extraordinary activity that can make a situation, where all quantum computers must retake their actions. 

In some models, quantum entanglements store their data in the electrons and photons always in certain periods. Those quantum memory storages can offer the possibility to compare data. And if there are errors. That thing can seen in differences in stored data. 

There is a possibility that quantum computers make the ring, where their data travels in waves. That allows the system to compare data that travels in the quantum system. The FRBs and other high-energy phenomena are not very long-lasting. And that means that if another quantum computer follows the first machine, that thing allows it to pass the fast energy pulse. 

If there is a difference that means there could be errors in qubits. The quantum entanglement can also used for making the new types of quantum sensors that detect differences in energy levels of the qubit. Quantum data storage makes it possible. That system can store data in quantum form. And then those things can put in superposition and entanglement. 


https://scitechdaily.com/challenging-traditional-theories-physicists-develop-new-method-to-quantify-quantum-entanglement/


https://scitechdaily.com/quantum-breakthrough-new-method-preserves-information-against-all-odds/


https://en.wikipedia.org/wiki/Gr%C3%BCneisen_parameter


https://en.wikipedia.org/wiki/Hall_effect


https://en.wikipedia.org/wiki/Hellmann%E2%80%93Feynman_theorem


https://en.wikipedia.org/wiki/Von_Neumann_entropy


https://miraclesofthequantumworld.blogspot.com/2024/02/the-quantum-computers-are-not-ready-yet.html


Wednesday, February 21, 2024

Black holes are the brightest objects in the universe.


"This artist’s impression shows the record-breaking quasar J059-4351, the bright core of a distant galaxy that is powered by a supermassive black hole. Using ESO’s Very Large Telescope (VLT) in Chile, this quasar has been found to be the most luminous object known in the Universe to date. The supermassive black hole, seen here pulling in surrounding matter, has a mass 17 billion times that of the Sun and is growing in mass by the equivalent of another Sun per day, making it the fastest-growing black hole ever known. Credit: ESO/M. Kornmesser" (ScitechDaily, Brightest Object in the Universe Discovered – Powered by Supermassive Black Hole Eating a Sun a Day)


The brightest object in the universe eats a sun in a day. That supermassive black hole is in quasar J059-4351. The paradox is that the black holes are the brightest objects in the universe. The paradox is that the black hole itself will not send any radiation, but its transition or material disks are very bright. 


The Sagittarius A* gives new data about the time dilation and speed of light.


Supermassive black holes are the most powerful objects in the universe. Things like rotation speed or spin is the thing that makes supermassive black holes interesting. The spin of the Sagittarius A*, or Sgr A* is about 60% of the speed of light. When material falls into the supermassive black hole, it forms a transition disk, the spiral structure around the mass center. The spiral continues behind the event horizon, or the point. Where escaping velocity crosses the speed of light. 

That means inside the event horizon photon and other particles travel with the same speed. The speed of photons is higher than other photons because the massive gravity effect pulls it from the front side. When a particle closes the black hole, massive gravity starts to pull it into a form that looks like spaghetti. This effect will turn things like quarks into elongated things. 

When we think that black holes are like potholes, that gravitational pothole turns the universe smaller. The reason for that effect is this black hole collects more information into that pothole. There is no reflection because all photons and other material and wave movement travel into the black holes. And the last particle that can escape from the massive gravity is the photon. 

Black holes also prevent the Hall fields or potential walls from forming because they pull all energy inside it. Some electrons and photons whirl around the event horizon. Those whirling particles get their energy from the material disk, which sends radiation also inside the black hole. That raises those particle's energy levels to extremely high. 


"This artist’s illustration shows a cross-section of the supermassive black hole and surrounding material in the center of our galaxy. The black sphere in the center represents the event horizon of the black hole, the point of no return from which nothing, not even light, can escape. Looking at the spinning black hole from the side, as depicted in this illustration, the surrounding spacetime is shaped like an American football. The yellow-orange material to either side represents gas swirling around the black hole. This material inevitably plunges towards the black hole and crosses the event horizon once it falls inside the football shape. The area inside the football shape but outside the event horizon is therefore depicted as a cavity. The blue blobs show jets firing away from the poles of the spinning black hole. Credit: NASA/CXC/M.Weiss" (ScitechDaily, Warp Speed Ahead: How Our Galaxy’s Black Hole Bends Spacetime)

One reason for high-power gamma- and X-ray impulses is in the relativistic jet. When particles at the edge of a relativistic jet and the jet's energy fields interact with gas around the black hole, that effect forms intensive high-energy radiation. The radiation forms when energy from those particles and energy fields transfers into the material disk. When particles hit that material cloud they deliver energy. And that energy transfer is the thing, that forms gamma- and X-rays. 

The weight of the Sgr A* is over four million suns. Accurately its mass is 4,30 million suns. Still, that thing is like a rugby ball. There is the possibility that the relativistic jet pulls the Sgr A*'s energy fields with it. And that forms a cosmic vacuum that stretches the black hole. Or some kind of energy tunnel travels through the black hole. In the third model, the fast spin curves the gravity fields, and that causes the rugby-ball-shaped structure. That means gravity in its poles is a little bit weaker than in other points in it. 




There is suspicion that hypothetical Hawking's radiation forms when those photons in hyper-high energy levels make a superposition. The requirement for that is this: the other electron or photon is in a different energy level. And they oscillate with the same frequency. The idea is that the lower photon (or electron if that thing is an electron pair) has a lower energy level because a black hole pulls energy out from it. 

At the point of the event horizon, gravitational waves can also orbit the black hole. Standing gravitational waves can transport energy into the particles or other wave movements that travel through the event horizon. So Hawking radiation can come from the energy bridges between superpositioned and entangled particles. And because the radiation comes from the end of those energy bridges its wavelength is very small and wave rise is not very high.  

The standing gravitational waves that harvest energy from their environment can turn very high energy levels. In that model, gravitational waves interact like all other wave movements. That means higher energy gravitational waves transport energy to the lower energy gravitational waves. And they also can push those gravitational waves away. That thing can explain why black holes send wave movement. 

When those superpositioned particles touch the event horizon their energy positions change places suddenly. The lower energy particle turns suddenly into a higher energy participant of the quantum entanglement. That thing sends an energy impulse to the upper particle. So that means Hawking radiation can come from that kind of photon pairs or energy bridges between them. 


It's possible. That event horizon can transport energy into the energy bridge that travels between superpositioned and entangled particles. 


When those superpositioned particles fall into the black hole through the event horizon the energy level of the lower photon turns suddenly higher, and that sends an impulse through the energy bridge when that thing travels through the event horizon. In that model, the other photon pumps energy to the photon that was in a higher energy level just before the lower photon touches the event horizon. 

A black hole's speed cannot cross the speed of light if we look at the things outside the event horizon. But as we know speed is also energy. The thing is that the virtual crossing at the speed of light is possible. In that case, the outside energy that impacts the particle along with the kinetic energy can raise its energy level to a level that is higher than the speed of light causes. 

Kinetic energy is wave movement that the particle traps. When a particle travels in the universe, quantum fields touch it like plaque. That plaque is the kinetic energy. The reason why particles cannot cross the speed of light is that in the critical moment, the energy jumps away from the particle and starts to travel to the environment. This thing denies crossing the cosmic speed limit. 

But virtually crossing the speed of light is a very easy thing. At the quantum level. Speed is similar to in our size world. That means the same rules that affect vehicles like cars can used for modeling speed and impacts of subatomic particles. 

The thing is that when two particles like electrons impact with speed of 60% of the speed of light, the impact speed is 120% of the speed of light. In that case, a high energy level causes virtual crossing at the speed of light. In the same way, objects can hit denser energy fields at extremely high speeds. And that thing could load more energy into it than it normally does. 

The reason why anything that has mass cannot cross the speed of light can be the same as the thing. That nothing that has no mass, cannot have unlimited slowing speed. When particles like electrons travel in a vacuum and then suddenly hit the water they take that impact into their quantum field. The electron's internal structure jumps forward and that movement in the quantum field causes photon's formation. 

One down quark and two up quarks form the proton. In neutron, there are two down and one up quark. Those quarks form a structure, that looks like a trapeze. In that structure, one quark hangs between two quarks. In a proton, two up quarks hang one down quark. When a proton or neutron hits water with its maximum speed one quark jumps forward and starts to rotate around those structures. 

That rotation movement is like a bolt that we can rotate between our hands keeping the wire from both ends. That movement pumps energy out from the proton. When a particle moves energy into its environment. It must form a photon. And then that photon transports energy out from that particle. That is the thing, that we see as Cherenkov radiation. 


https://scitechdaily.com/brightest-object-in-the-universe-discovered-powered-by-supermassive-black-hole-eating-a-sun-a-day/


https://scitechdaily.com/warp-speed-ahead-how-our-galaxys-black-hole-bends-spacetime/


https://learningmachines9.wordpress.com/2024/02/21/black-holes-are-the-brightest-objects-in-the-universe/


Dark energy could be something incredible.

   Dark energy could be something incredible.  "The Dark Energy Spectroscopic Instrument is mounted on the U.S. National Science Founda...