Skip to main content

Neutron stars can uncover what the WIMPs can be.


"A recent study from the ARC Centre of Excellence for Dark Matter Particle Physics suggests that neutron stars could play a crucial role in understanding dark matter. The study found that dark matter particles, when colliding within neutron stars, can quickly heat these stars, potentially making them observable through future astronomical technologies. This rapid heating process, previously thought to take longer than the universe’s age, now appears achievable within days, providing a new method to study dark matter’s interactions with regular matter." (ScitechDaily, Dark Matter Decoded: How Neutron Stars May Solve the Universe’s Biggest Mystery)


Neutron stars can explain dark matter. At least, part of it. In some models, the dark matter can be the curvature in spacetime. So, the thing is that dark matter is the virtual material, that puts gravity waves moving. The curvature in spacetime can mean a very small space. There are models where the "U-shape" structures in superstrings can put gravity waves moving. 

In some other models, dark matter is a so-called singularity. In singular material, all particles and quantum fields are one entirety. In some theories that material can form black holes. The idea is that when particles get a high enough energy load, that energy turns material into singularity. And that tells the thing can make it a black hole. In some theories, the dark matter is like exciton. 

So dark matter can be a hole in the energy field. Or it can be material whose temperature is lower than 3K cosmic background. If that material is at a lower energy level than 3K or if its energy level is lower than 0K that material is not possible to detect. The 0K is the absolute zero point in the universe. 

But if some material reaches a lower temperature, that material forms a pothole in the quantum fields. The radiation cannot reach that hypothetical material, because it must go through energy minimum. And in that moment. The material reaches the same energy level as its environment. 

In that moment material blends into its environment. In the same way, the radiation cannot travel through energy minimum. An energy minimum seals the particle away from the environment. A hypothetical particle, with a temperature lower than zero kelvin cannot interact with its environment. Or its interaction is so weak, that we cannot notice it. 

There are many theories about what the dark matter can be. Some theories explain that the mystery gravitational effect is the impacting gravity fields. That offers an answer to the key question of dark matter. Why are there no weakly interacting massive particle (WIMP) detections? What makes dark matter mysterious is this. It doesn't seem to have a source. The other version of that theorem is this. When the universe expands, quantum fields travel out from it. 

That energy is like plaque that impacts the smallest particles in the universe. When that energy impacts particles or the small strings between quarks and gluons, that thing makes those strings or particles over energy. When energy impacts particles, it just increases their mass. There is the possibility that dark matter is so-called free superstrings. 

In some theories, those superstrings form the particles or the whisk-looking structure that we know as particles. Suppose there is a free superstring structure in the universe. That means that there is a material that is different from what we know. All known particles that we know are like balls. Free superstrings are like wires. 

And that means those superstrings can exist separately from the ball-shaped particles, which means that we are hard to see that thing. In string theory, the superstrings are the smallest possible parts of material and energy. Those strings form whisk-looking structures like quarks around the mass center, that could be quantum-size black holes. 

Sometimes researchers argue which is the right thing. The quantum field theory explains material as the internal structures of quantum fields. And superstring theory explains materia as the entire of superstrings. It's possible that both those theories are right. The possibility is that quantum fields are like gauze over the quantum strings. 

And if particles spin too fast that effect causes a situation. That energy flows out from the spin axle. In this process, outcoming energy travels in the particle. If spin is too fast outcoming energy pushes the particle into the form, that looks like a stick. This thing can turn particles invisible. 


https://scitechdaily.com/dark-matter-decoded-how-neutron-stars-may-solve-the-universes-biggest-mystery/


Comments

Popular posts from this blog

Researchers think that the multiverse is not fiction anymore.

Multiverse means that our universe is one of many universes. The reason why researchers and scientists believe that this is true is that logical. About 50 years ago people didn't know that there were other solar systems. Exoplanets were only theories in the 80's.  About 400 years ago people thought that our Sun was the only star in the universe. Edvin Hubble proved that our galaxy, Milky Way is one of many galaxies. Then researchers found that galaxies form groups, and supergroups. That means that today we think that the universe, where we live is the ultimate supergroup of galactic supergroups. And logically thinking there should be other universes. We believe that the universe began its existence in an event or series of events called the Big Bang. That event did not begin, because the energy that formed material should come from somewhere. The Big Bang was not one "bang" or explosion. It was a series of events where material took form. Or the energy level that it h

Helium-3 production from tritium.

The fusion energy is theoretical level. The fusion systems are still at the laboratory level. That means there are many problems to overcome before commercial fusion systems. The fusion fuel can be produced from heavy water. The system bombs deuterium with neutrons. Or it can shoot deuterium or some other atoms against each other.  That can create neutron stripping, which transforms deuterium into tritium, and then the laser systems can increase the dividing speed of tritium. In that process, tritium transforms into Heluim-3 (3^He). If the system wants to produce Helium-3 for experimental or pulsed plasma rocket engines, that thing doesn't require that the Helium-3 production must be economical.  Hydrogen's heavy isotopes deuterium and tritium are the most promising fusion fuels. The problem is where the system can produce tritium or Helium3 for the fusion fuel. The 100 million K temperature allows two Heium-3 atoms can create fusion. There is the possibility to produce Hellium

Is some quantum version of the bubble pulse effect behind the dark energy?

  "Dark energy’s role in propelling the universe’s accelerated expansion presents a pivotal challenge in astrophysics, driving ongoing research and space missions dedicated to uncovering the nature of this mysterious force." (ScitechDaily, Deciphering the Dark: The Accelerating Universe and the Quest for Dark Energy)  Is the universe formed in energy projection? That traveled in some kind of space vacuum. That requires. That there was some kind of energy field before the Big Bang.  Quantum field is the common name of all power fields in the universe.  Is dark energy a gravitational version of the bubble pulse effect, that detonates submarines? In the bubble pulse effect, the bubble or some other projection. That travels in the larger bubble causing a very high explosive explosion. So could that effect be possible in electromagnetic and gravitational fields? Gravitational fields differ from electromagnetic fields because of their wavelength.  In some models, the double bubble,