The ice-cube sensor detected the high-energy tau-neutrinos. Those mysterious ghost particles' form and weak interaction are some of the most interesting things in the universe. The neutrino is sometimes called a "grey photon". The weak interaction means that the neutrino can travel through planets without interaction. And only direct impact with other atoms makes that mysterious particle interact and release its energy.
The thing that could help to solve the mystery of neutrinos is the charm quark, that researchers discovered in the proton. The charm quark is more massive than other particles in the proton. So the charm quark is heavier than a proton, where it should be involved. Maybe charm quark spins so fast that it hovers in the proton.
The idea is that fast-spinning particle makes the quantum supercavitation effect. When the propeller super cavitates, it starts to spin in a bubble, where it cannot touch the water. So we can use supercavitation as the model of how the fast-spinning particle acts in the quantum field.
If a particle spins fast enough, it forms a bubble around it. The quantum field acts like water. And if a particle spins "too fast". The particle forms a quantum bubble around it. The fast spin means that the quantum field cannot touch that particle. That ultra-fast spin can cause a situation, where the particle simply pushes other quantum fields from around it. And the only time when a particle can cause interaction is that. It hits directly into the atom or some subatomic particle.
In this model, the fast spin causes a situation in which the particle tunnels itself through the material. But can neutrinos be faster than light?
There is a model that neutrinos can travel slower than the speed of light. But the fast spin makes the shell of that mysterious particle move faster than the speed of light. The idea is that neutrino travels its axle vertically to its trajectory. That means the spin of a neutrino makes its shell move faster than the speed of light.
The other version is that the wobbling spin of some, yet unknown particle forms the neutrino. In this model, the unknown particle's spin is similar to the electron's spin. The particle moves back and forth. That very slow but fast spinning particle could be the hypothetical weakly interactive massive particle (WIMP). The WIMP moves slowly but spins very fast. And if the WIMP spins like an electron, it sends the energy impulse all the time, when it changes its direction. And wave-particle duality turns that energy impulse into the particle called neutrino.
The speed of light depends on the environment. That means the speed of light is higher in space than in the atmosphere. The speed of light is higher in the atmosphere than it is in water. And neutrino detector benefits this thing. When a particle moves from another environment like from interplanetary space to the atmosphere it releases its energy as a blue light flash called Cherenkov radiation. So in a small moment particle travels with a speed that is higher than the speed of light in the medium.
The neutrino detector detects neutrino when its speed decreases, and it releases its energy as a blue light flash. Neutrino arrives at the sensor with speed that is lower than the speed of light. But its speed is faster, than the speed of light in a medium like water. When a neutrino hits something it releases its kinetic energy in the form of a blue light flash, called Cherenkov radiation. That radiation makes the sky blue because particles hit Earth's atmosphere at a speed that is higher than the speed of light in the atmosphere.
That means the neutrino has already released its energy when it hits the neutrino detector. That means that the neutrino's speed can be far higher in interstellar space than it is in our solar system. There is a theory that neutrino is a transformation particle of a hypothetical tachyon, faster than a light particle. In theories, the tachyon can form in antimatter annihilation in interstellar space. When that particle travels in the solar system, the plasma around the star slows its speed, and maybe the neutrino has been tachyon.
https://bigthink.com/hard-science/ghost-particles-icecube-confirms-deep-space-quantum-phenomenon/
https://www.livescience.com/protons-charm-quark
https://www.sciencenews.org/article/proton-charm-quark-up-down-particle-physics
https://en.wikipedia.org/wiki/Neutrino
https://en.wikipedia.org/wiki/Spin_(physics)
https://en.wikipedia.org/wiki/Standard_Model
https://en.wikipedia.org/wiki/Tachyon
https://en.wikipedia.org/wiki/Weakly_interacting_massive_particle
Comments
Post a Comment