Skip to main content

Researchers found a new model of quantum tunneling.


"New research reveals new insights into electron tunneling dynamics at the sub-nanometer scale. Using a van der Waals complex, Ar-Kr+, and an innovative approach for tracking tunneling dynamics, the research highlights the crucial influence of neighboring atoms in quantum tunneling. This work has important implications for quantum physics, nanoelectronics, and the study of complex biomolecules." (ScitechDaily, Quantum Breakthrough: Unveiling the Mysteries of Electron Tunneling)



Electron tunneling is one model of quantum tunneling. This new solution means a tunneling effect between electrons. That are in opposite positions to the potential wall. 

Researchers created a new model for electron tunneling. Electron tunneling is one version of quantum tunneling. In quantum tunneling particle or wave movement impacts the potential wall. And then that thing travels through the wall. In electron tunneling, an electron makes that thing. 

Electrons can travel through the wall itself. In that case, its energy level rises so high that it pushes other particles away from its route.  Or it can send wave movement through the wall. That thing makes electron tunneling important thing in semiconductors. 

 And then make a superposition with some other electron. In that case, the higher energy electron can send information through the wall to another electron. In that case, the electron simply transfers its oscillation to another electron that starts to oscillate with the same frequency as the first electron. 


"The electronic chip and the Van der Waals complex with an internuclear distance 0.39 nm. Credit: Ming Zhu, Jihong Tong, Xiwang Liu, Weifeng Yang, Xiaochun Gong, Wenyu Jiang, Peifen Lu, Hui Li, Xiaohong Song & Jian Wu" (ScitechDaily, Quantum Breakthrough: Unveiling the Mysteries of Electron Tunneling)


The potential layer can pump energy to wave movement that tunnels through it. 

"A simulation of a wave packet incident on a potential barrier. In relative units, the barrier energy is 20, greater than the mean wave packet energy of 14. A portion of the wave packet passes through the barrier." (Wikipedia, Quantum tunnelling)



Quantum tunneling can used in a very large technology sector. Engineers can benefit from quantum tunneling in microchips in semiconducting technology. However, the tunneling effect is useful in next-generation sensors and scanning technology. 

Quantum tunneling is the thing that makes it possible to create new types of engines. Those systems send wave movement against the plates. Then those plates will resend that energy to another side of the wall. If the system drives energy to those walls, that will increase the energy level of the wave movement. 

From the image, you can see the thing in those engines. The main part of energy reflects forward. The tunneling effect makes the small pike behind those plates. In some models, the system can operate otherwise. The plate is at the side or direction where the craft is moving. And the wave movement hits it like a sail. So that kind of engine can give thurst. 

That tunneling effect can create at least a pressure impulse at the other side of the wall. But it's possible to use that kind of engine system in outer space, if the system sprays particles to the layer, the tunneling engine can transfer energy to them and push them backward. 


https://scitechdaily.com/quantum-breakthrough-unveiling-the-mysteries-of-electron-tunneling/


https://en.wikipedia.org/wiki/Quantum_tunnelling


Comments

Popular posts from this blog

Researchers think that the multiverse is not fiction anymore.

Multiverse means that our universe is one of many universes. The reason why researchers and scientists believe that this is true is that logical. About 50 years ago people didn't know that there were other solar systems. Exoplanets were only theories in the 80's.  About 400 years ago people thought that our Sun was the only star in the universe. Edvin Hubble proved that our galaxy, Milky Way is one of many galaxies. Then researchers found that galaxies form groups, and supergroups. That means that today we think that the universe, where we live is the ultimate supergroup of galactic supergroups. And logically thinking there should be other universes. We believe that the universe began its existence in an event or series of events called the Big Bang. That event did not begin, because the energy that formed material should come from somewhere. The Big Bang was not one "bang" or explosion. It was a series of events where material took form. Or the energy level that it h...

Spinning cylinders prove a 50-year-old physics problem.

"Scientists at the University of Southampton have experimentally proven the Zel’dovich effect by amplifying electromagnetic waves using a spinning metal cylinder, confirming a theoretical prediction from the 1970s and opening new avenues in technology and quantum physics. Credit: SciTechDaily.com" (ScitechDaily, 50-Year-Old Physics Theory Proven for the First Time With Electromagnetic Waves) "“Colleagues and I successfully tested this theory in sound waves a few years ago, but until this most recent experiment, it hadn’t been proven with electromagnetic waves. Using relatively simple equipment – a resonant circuit interacting with a spinning metal cylinder – and by creating the specific conditions required, we have now been able to do this.” (ScitechDaily, 50-Year-Old Physics Theory Proven for the First Time With Electromagnetic Waves) Researchers amplified electromagnetic waves using spinning metal cylinders. That experiment proved the Sunyaev–Zeldovich, SZ effect, is v...

What makes it hard to create a room-temperature superconductor?

"The discovery of wave-like Cooper pairs in Kagome metals introduces a new era in superconductivity research, offering potential for innovative quantum devices and superconducting electronics, driven by theoretical predictions and recent experimental validations. Credit: SciTechDaily.com" (ScitechDaily, Kagome Metals Unlocked: A New Dimension of Superconductivity) "Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source" (Wikipedia, Superconductivity) Theoretically, a superconducting electric circu...