Skip to main content

Researchers created a new method to manipulate qubits by using sound.

    Researchers created a new method to manipulate qubits by using sound. 

Theoretically is possible to move even photons by using soundwaves. Soundwaves are molecular movements, and directly pushing photons using air molecules is impossible. But it's possible to use molecules or atomic clouds to push smaller atoms. Then smaller atoms will push smaller and smaller particles. 

If the chain in the series of smaller particles is long enough, the particles will turn smaller and smaller. It's possible. That push to the molecule can send from the series of atoms and subatomic components to photons. In this case particle series whose size decreases during all its series could push photons. 

But manipulating qubits by using soundwaves can happen by stressing piezo-electric crystals with soundwaves. The other version is to point sound waves to photonic crystals. Then the soundwaves can affect the crystal's symmetry. Changes in photonic crystal symmetry affect the movements of quantum elements in those crystals. 


"Acoustic resonators, found in devices like smartphones and Wi-Fi systems, degrade over time with no easy way to monitor this degradation. Researchers from Harvard SEAS and Purdue University have now developed a method using atomic vacancies in silicon carbide to measure the stability of these resonators and even manipulate quantum states, potentially benefiting accelerometers, gyroscopes, clocks, and quantum networking." (ScitechDaily.com/Quantum Leap – Harvard Scientists Use Sound To Test Devices, Control Qubits)


"A piezoelectric layer (green) sandwiched between two electrodes (yellow) atop of a silicon carbide acoustic resonator (blue). Acoustic waves generated by the electrodes and piezoelectric layer put mechanical strain on the lattice, which flip the spin of the defect (red). The spin is read out with a laser-focused onto the backside of the resonator. Credit: Hu Group/Harvard SEAS" (Quantum Leap – Harvard Scientists Use Sound To Test Devices, Control Qubits)


The researchers of Harward SEAS (School of Engineering and Applied Science) laboratory used silicon carbide in a test where they manipulated atomic vacancies in the material by using sound waves. As I wrote before soundwave is a pressure impulse. When pressure impact hits the piezoelectric layer it turns to electromagnetic waves. The thing where the piezoelectric layer turns electric impulses back to soundwaves is not very difficult to make. 

The system can send electric impulses from the piezoelectric layer to a loudspeaker that is connected to the amplifier. The piezoelectric layers can connect with transistors that can increase their signal power. This kind of system can allow next-generation security for signals and communication. 

The ability to use soundwaves to control qubits can used to make the next-generation underwater communication. And there are many other applications for this kind of system. The system that can control qubits with soundwaves or qubits that control soundwaves can have applications for nanotechnology and other things. In nanotechnology, the precise controlled soundwaves can push objects, that are smaller than molecules. 

https://scitechdaily.com/quantum-leap-harvard-scientists-use-sound-to-test-devices-control-qubits/


Comments

Popular posts from this blog

Researchers think that the multiverse is not fiction anymore.

Multiverse means that our universe is one of many universes. The reason why researchers and scientists believe that this is true is that logical. About 50 years ago people didn't know that there were other solar systems. Exoplanets were only theories in the 80's.  About 400 years ago people thought that our Sun was the only star in the universe. Edvin Hubble proved that our galaxy, Milky Way is one of many galaxies. Then researchers found that galaxies form groups, and supergroups. That means that today we think that the universe, where we live is the ultimate supergroup of galactic supergroups. And logically thinking there should be other universes. We believe that the universe began its existence in an event or series of events called the Big Bang. That event did not begin, because the energy that formed material should come from somewhere. The Big Bang was not one "bang" or explosion. It was a series of events where material took form. Or the energy level that it h

Helium-3 production from tritium.

The fusion energy is theoretical level. The fusion systems are still at the laboratory level. That means there are many problems to overcome before commercial fusion systems. The fusion fuel can be produced from heavy water. The system bombs deuterium with neutrons. Or it can shoot deuterium or some other atoms against each other.  That can create neutron stripping, which transforms deuterium into tritium, and then the laser systems can increase the dividing speed of tritium. In that process, tritium transforms into Heluim-3 (3^He). If the system wants to produce Helium-3 for experimental or pulsed plasma rocket engines, that thing doesn't require that the Helium-3 production must be economical.  Hydrogen's heavy isotopes deuterium and tritium are the most promising fusion fuels. The problem is where the system can produce tritium or Helium3 for the fusion fuel. The 100 million K temperature allows two Heium-3 atoms can create fusion. There is the possibility to produce Hellium

Is some quantum version of the bubble pulse effect behind the dark energy?

  "Dark energy’s role in propelling the universe’s accelerated expansion presents a pivotal challenge in astrophysics, driving ongoing research and space missions dedicated to uncovering the nature of this mysterious force." (ScitechDaily, Deciphering the Dark: The Accelerating Universe and the Quest for Dark Energy)  Is the universe formed in energy projection? That traveled in some kind of space vacuum. That requires. That there was some kind of energy field before the Big Bang.  Quantum field is the common name of all power fields in the universe.  Is dark energy a gravitational version of the bubble pulse effect, that detonates submarines? In the bubble pulse effect, the bubble or some other projection. That travels in the larger bubble causing a very high explosive explosion. So could that effect be possible in electromagnetic and gravitational fields? Gravitational fields differ from electromagnetic fields because of their wavelength.  In some models, the double bubble,