Skip to main content

MOND (Modified Newtonian Dynamics): when gravitation interacts differently at low acceleration.

 MOND (Modified Newtonian Dynamics): when gravitation interacts differently at low acceleration.


The first evidence of the existence of MOND (Modified Newtonian Dynamics) is true. That means Einstein and Newton were wrong, and the acceleration determines the gravitational interaction. The gravitational interaction is weaker when particles have low acceleration. And the increase in acceleration makes gravitation stronger. That means the MOND can make us rethink the form of gravitation. Or it can make us fill out the gravitational interaction model.



So the gravitational model goes like this:


Gravitation is like string. Graviton or some other particle pulls the channel behind it. That channel is like a wormhole. There is low electromagnetic pressure in that channel. The size of a graviton would be so small that the only wave movement that could go through that channel would be gravitational radiation or gravitational waves.

Or maybe there is no wave movement at all. When that string impacts some other particle, it pulls energy out of it at the gravitational center's side. That thing makes the particle travel in the direction of the gravitational center. The reason for that is that the other quantum fields push the particle in a direction with a lower energy level.

In that model, dark matter is the thing that forms when that string starts to pull gravitons back to the gravitational center. Graviton will stretch that string, and it can form the virtual particle called WIMP. I wrote that maybe gravitation interacts with particles through those WIMPs. That means the stretch or wave called WIMP acts like a hook that pushes particles with it.

In this gravitational model, the quantum field at the front of the particle pushes it into the gravitational center. The thing that determines whether particles can escape from the gravitational field is whether the quantum shadow at the front of the particle can pull it away. Or does the gravitational string, along with the quantum field at the front of the particle, push it back to the gravitational center?


Why does gravitation interact weakly with particles with low acceleration?


The answer is that particles travel through space in the electromagnetic tube. Electromagnetic radiation forms shadows on both sides of the particle. And when the particle's acceleration speed is high, that turns that tube or shadow at the front of the particle shorter. So the quantum field ahead of the particle pushes it back harder than if the particle's acceleration is low.

When a particle accelerates slowly, the shadow in front of it is longer than if the acceleration is strong. That means the quantum field at the front of the particle pushes the particle to the gravitational center weaker if the acceleration of the particle is lower. And that thing can explain why gravitation is what it is.

https://scitechdaily.com/conclusive-evidence-for-modified-gravity-collapse-of-newtons-and-einsteins-theories-in-low-acceleration/

Comments

Popular posts from this blog

Researchers think that the multiverse is not fiction anymore.

Multiverse means that our universe is one of many universes. The reason why researchers and scientists believe that this is true is that logical. About 50 years ago people didn't know that there were other solar systems. Exoplanets were only theories in the 80's.  About 400 years ago people thought that our Sun was the only star in the universe. Edvin Hubble proved that our galaxy, Milky Way is one of many galaxies. Then researchers found that galaxies form groups, and supergroups. That means that today we think that the universe, where we live is the ultimate supergroup of galactic supergroups. And logically thinking there should be other universes. We believe that the universe began its existence in an event or series of events called the Big Bang. That event did not begin, because the energy that formed material should come from somewhere. The Big Bang was not one "bang" or explosion. It was a series of events where material took form. Or the energy level that it h

Helium-3 production from tritium.

The fusion energy is theoretical level. The fusion systems are still at the laboratory level. That means there are many problems to overcome before commercial fusion systems. The fusion fuel can be produced from heavy water. The system bombs deuterium with neutrons. Or it can shoot deuterium or some other atoms against each other.  That can create neutron stripping, which transforms deuterium into tritium, and then the laser systems can increase the dividing speed of tritium. In that process, tritium transforms into Heluim-3 (3^He). If the system wants to produce Helium-3 for experimental or pulsed plasma rocket engines, that thing doesn't require that the Helium-3 production must be economical.  Hydrogen's heavy isotopes deuterium and tritium are the most promising fusion fuels. The problem is where the system can produce tritium or Helium3 for the fusion fuel. The 100 million K temperature allows two Heium-3 atoms can create fusion. There is the possibility to produce Hellium

Is some quantum version of the bubble pulse effect behind the dark energy?

  "Dark energy’s role in propelling the universe’s accelerated expansion presents a pivotal challenge in astrophysics, driving ongoing research and space missions dedicated to uncovering the nature of this mysterious force." (ScitechDaily, Deciphering the Dark: The Accelerating Universe and the Quest for Dark Energy)  Is the universe formed in energy projection? That traveled in some kind of space vacuum. That requires. That there was some kind of energy field before the Big Bang.  Quantum field is the common name of all power fields in the universe.  Is dark energy a gravitational version of the bubble pulse effect, that detonates submarines? In the bubble pulse effect, the bubble or some other projection. That travels in the larger bubble causing a very high explosive explosion. So could that effect be possible in electromagnetic and gravitational fields? Gravitational fields differ from electromagnetic fields because of their wavelength.  In some models, the double bubble,