Skip to main content

The hydrogen-burning supernovas are interesting models.


"Researchers discovered a significant magnesium anomaly in a meteorite’s dust particle, challenging current astrophysical models and suggesting new insights into hydrogen-burning supernovas. (Artist’s concept.)Credit: SciTechDaily.com" (ScitechDaily, Rare Dust Particle From Ancient Extraterrestrial Meteorite Challenges Astrophysical Models)

If the star is too heavy when its fusion reaction starts, it can detonate just at that moment, when its fusion starts. If the collapsing nebula is heavy enough, it can form a black hole straight from the nebula. But if the nebula's gravity is too heavy to form the blue giant or too small it can collapse straight into a black hole. If the forming star is a little bit larger than the blue supergiants. It can explode immediately when the fusion starts. 

 

The theory of hydrogen-burning supernovas consists model of the giant stars that explode immediately after their fusion starts. When the interstellar nebula falls it can form a black hole. Or it can form a star whose fusion runs too hot, and that causes a supernova explosion just after the nuclear reaction begins. 

Things like FRBs (Fast Radio Bursts) can transport energy into young stars, and that energy can cause situations, where the energy level in the star turns too high. And that causes the star to explode. Things like kilonovas, or impacting neutron stars, can form fusion in the molecular cloud around it. That shockwave can push atoms together forming things. Like gold and even heavier elements. 

Also, if the star goes near a supernova, another supernova can cause a situation in which another star can detonate because of that massive energy blast. The black holes can cause the stars to run too hot when they transmit energy into them. Black holes can pull energy through stars and that accelerates the fusion. 

In some models, the young, but very massive star can form at least neutron stars and black holes just after their fusion starts. The white dwarfs require that there is carbon in the star. 

It's possible that if the rogue planet starts the interstellar nebula collapse, that planet forms an empty bubble in the star. When the nebula falls and nuclear reactions begin, the planet forms a structure that acts like a vacuum bomb. The shockwave travels inside the planet and reflects causing the expanding fusion front inside the star. And that fusion causes a situation in which the just-born star can explode immediately. 

https://scitechdaily.com/rare-dust-particle-from-ancient-extraterrestrial-meteorite-challenges-astrophysical-models/

Comments

Popular posts from this blog

Researchers think that the multiverse is not fiction anymore.

Multiverse means that our universe is one of many universes. The reason why researchers and scientists believe that this is true is that logical. About 50 years ago people didn't know that there were other solar systems. Exoplanets were only theories in the 80's.  About 400 years ago people thought that our Sun was the only star in the universe. Edvin Hubble proved that our galaxy, Milky Way is one of many galaxies. Then researchers found that galaxies form groups, and supergroups. That means that today we think that the universe, where we live is the ultimate supergroup of galactic supergroups. And logically thinking there should be other universes. We believe that the universe began its existence in an event or series of events called the Big Bang. That event did not begin, because the energy that formed material should come from somewhere. The Big Bang was not one "bang" or explosion. It was a series of events where material took form. Or the energy level that it h...

Spinning cylinders prove a 50-year-old physics problem.

"Scientists at the University of Southampton have experimentally proven the Zel’dovich effect by amplifying electromagnetic waves using a spinning metal cylinder, confirming a theoretical prediction from the 1970s and opening new avenues in technology and quantum physics. Credit: SciTechDaily.com" (ScitechDaily, 50-Year-Old Physics Theory Proven for the First Time With Electromagnetic Waves) "“Colleagues and I successfully tested this theory in sound waves a few years ago, but until this most recent experiment, it hadn’t been proven with electromagnetic waves. Using relatively simple equipment – a resonant circuit interacting with a spinning metal cylinder – and by creating the specific conditions required, we have now been able to do this.” (ScitechDaily, 50-Year-Old Physics Theory Proven for the First Time With Electromagnetic Waves) Researchers amplified electromagnetic waves using spinning metal cylinders. That experiment proved the Sunyaev–Zeldovich, SZ effect, is v...

What makes it hard to create a room-temperature superconductor?

"The discovery of wave-like Cooper pairs in Kagome metals introduces a new era in superconductivity research, offering potential for innovative quantum devices and superconducting electronics, driven by theoretical predictions and recent experimental validations. Credit: SciTechDaily.com" (ScitechDaily, Kagome Metals Unlocked: A New Dimension of Superconductivity) "Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source" (Wikipedia, Superconductivity) Theoretically, a superconducting electric circu...