Skip to main content

The breakthrough in solid-state qubits.

Hybrid integration of a designer nanodiamond with photonic circuits via ring resonators. Credit
Steven Burrows/Sun Group (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough)

******************************************

The next part is from ScitechDaily.com


"JILA breakthrough in integrating artificial atoms with photonic circuits advances quantum computing efficiency and scalability". (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough)


"In quantum information science, many particles can act as “bits,” from individual atoms to photons. At JILA, researchers utilize these bits as “qubits,” storing and processing quantum 1s or 0s through a unique system". (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough)

"While many JILA Fellows focus on qubits found in nature, such as atoms and ions, JILA Associate Fellow and University of Colorado Boulder Assistant Professor of Physics Shuo Sun is taking a different approach by using “artificial atoms,” or semiconducting nanocrystals with unique electronic properties. By exploiting the atomic dynamics inside fabricated diamond crystals, physicists like Sun can produce a new type of qubit, known as a “solid-state qubit,” or an artificial atom". (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough)

"Because these artificial atoms do not move, one way to let them talk to each other is to place them inside a photonic circuit. The photons traveling inside the photonic circuit can connect different artificial atoms. Like hot air moving through an air duct to warm a cold room, photons move through the quantum circuit to induce interactions between the artificial atoms. “Having an interface between artificial atoms and photons allows you to achieve precise control of the interactions between two artificial atoms,” explained Sun". (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough)

"Historically, there have been problems with integrating artificial atoms with photonic circuits. This is because creating the artificial atoms (where atoms are knocked out of a diamond crystal) is a very random process, leading to random placement of the artificial atoms, random number of artificial atoms at each location, and random color each artificial atom emits".(ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough)

https://scitechdaily.com/solid-state-qubits-artificial-atoms-unlock-quantum-computing-breakthrough/

JILA homepage: 

https://jila.colorado.edu/

*******************************************************************

Making photonic circuits in solid-state materials is quite difficult. Making a photonic network in solid-state material requires channels or tubes inside that material. And in that case, photons can travel or transmit wave movement in those channels. Those channels can be made using nanotubes. Or a laser can drill those channels in solid materials. 

Making quantum computers in solid-state material is similar. As making photonic network. The system must make quantum entanglement between two identical particles. And the most suitable particles are photons. Theoretically is possible to create two photonic clouds with similarly oscillating and the lasers will send information into them. 


In some models, the system can use two oppositely positioned time- or photonic crystals for making quantum entanglement. Laser rays will first freeze those photonic crystals. 


And then those systems can create quantum entanglements between those photons. The photons are been the most useful qubits because they don't interact with EM. fields. In regular systems, photons are framed in the frame, and then a laser sends information to them. 

The new idea is to use nano-diamonds, or artificial atoms for these purposes. The artificial atoms are diamond-like, very small crystal structures. Those crystal structures can create photonic clouds in or around them. And then those systems can make a superposition between two photonic clouds. That is one of the versions of solid-state qubits. 

The problem is how to make photons travel around the nanocrystals. In some versions, the nanocrystal creates an electron ring where electrons travel in line. And then, the laser beam that impacts energy to nanocrystals makes those electrons send photons. 

The thing. What would make it easier to control qubits is that a large group of makers of the qubits can controlled. In the ideal case, the system can create the quantum entanglement between large entireties. And the nanodiamond with a photonic ring with resonators is one of the most promising things in the world.

The system could create an electron ring that orbits the nanodiamond. Then the oscillator sends energy to that ring, and then those electrons send photons. That kind of system requires highly accurate energy measurements. 


https://scitechdaily.com/solid-state-qubits-artificial-atoms-unlock-quantum-computing-breakthrough/

Comments

Popular posts from this blog

Researchers think that the multiverse is not fiction anymore.

Multiverse means that our universe is one of many universes. The reason why researchers and scientists believe that this is true is that logical. About 50 years ago people didn't know that there were other solar systems. Exoplanets were only theories in the 80's.  About 400 years ago people thought that our Sun was the only star in the universe. Edvin Hubble proved that our galaxy, Milky Way is one of many galaxies. Then researchers found that galaxies form groups, and supergroups. That means that today we think that the universe, where we live is the ultimate supergroup of galactic supergroups. And logically thinking there should be other universes. We believe that the universe began its existence in an event or series of events called the Big Bang. That event did not begin, because the energy that formed material should come from somewhere. The Big Bang was not one "bang" or explosion. It was a series of events where material took form. Or the energy level that it h

Helium-3 production from tritium.

The fusion energy is theoretical level. The fusion systems are still at the laboratory level. That means there are many problems to overcome before commercial fusion systems. The fusion fuel can be produced from heavy water. The system bombs deuterium with neutrons. Or it can shoot deuterium or some other atoms against each other.  That can create neutron stripping, which transforms deuterium into tritium, and then the laser systems can increase the dividing speed of tritium. In that process, tritium transforms into Heluim-3 (3^He). If the system wants to produce Helium-3 for experimental or pulsed plasma rocket engines, that thing doesn't require that the Helium-3 production must be economical.  Hydrogen's heavy isotopes deuterium and tritium are the most promising fusion fuels. The problem is where the system can produce tritium or Helium3 for the fusion fuel. The 100 million K temperature allows two Heium-3 atoms can create fusion. There is the possibility to produce Hellium

Is some quantum version of the bubble pulse effect behind the dark energy?

  "Dark energy’s role in propelling the universe’s accelerated expansion presents a pivotal challenge in astrophysics, driving ongoing research and space missions dedicated to uncovering the nature of this mysterious force." (ScitechDaily, Deciphering the Dark: The Accelerating Universe and the Quest for Dark Energy)  Is the universe formed in energy projection? That traveled in some kind of space vacuum. That requires. That there was some kind of energy field before the Big Bang.  Quantum field is the common name of all power fields in the universe.  Is dark energy a gravitational version of the bubble pulse effect, that detonates submarines? In the bubble pulse effect, the bubble or some other projection. That travels in the larger bubble causing a very high explosive explosion. So could that effect be possible in electromagnetic and gravitational fields? Gravitational fields differ from electromagnetic fields because of their wavelength.  In some models, the double bubble,