Skip to main content

Gravitational waves don't arrive simultaneously with light.

  Gravitational waves don't arrive simultaneously with light. 


"In 2017, a kilonova sent light and gravitational waves across the Universe. Here on Earth, there was a 1.7 second signal arrival delay. Why?" 

(BigThink.com/Light and gravitational waves don’t arrive simultaneously)



The gravitational waves from the kilonova in 2017 arrived 1,7 seconds before visible light. The reason. Researchers might find the answer to the question of why that thing happened and why gravitational waves arrived before visible light from a "Flamingo" simulation. The simulation is meant for a universal model of the object and its magnetic field interaction with the material. All quantum fields interact similarly. And that simulation can give a hint that maybe gravitational wave comes closer than light. 


The Flamingo-simulation 

There are three possibilities as to why light comes after the gravitational waves. 


1) Gravitational waves come from different places than visible light. One suggestion is dark matter dense around gravitational centers. If the impact wave that leaves from kilonova has a high enough density that thing can interact with dark matter. In some models. There is a remarkable mass of dark matter inside neutron stars.

And collisions between those things cause an effect where that impact resonates with dark matter. In this model, gravitational waves are the result of the interaction between dark matter particles. 

2) The expanding shockwave that travels slower than the speed of light closes the light inside it. The shockwave cannot close gravitational waves inside it, and that causes an effect where light seems to travel slower than gravity waves. 


3) The third possibility is the most fascinating. A gravitational wave is an expanding gravitational field. When the gravitational field's expansion is fast enough the gravitational wave just sheds from the main gravity field. And gravity wave is traveling gravitational field. 

 It's possible that when gravitational waves harvest energy from a kilonova explosion they could travel faster than light. The gravitational wave should induct gravitational fields into other particles. Also, it can slow the speed of photons. If another gravitational field is not slowing the gravitational wave. That causes gravitational waves can travel faster than light in certain circumstances. 

In models, an extremely strong gravitational field pulls other energy fields to the gravitational center. When gravitational-wave impact those electromagnetic waves their energy level rises. In the kilonova explosion high energy level causes the situation. That gravity field starts to turn stronger. And when that energy production ends the gravitational fields start to shrink. In that case, the most out layer of the gravitational field just rips itself off the entirety. 

******************************************************************************

"One of the most fascinating, but also most rare, events in all of the Universe is the inspiral and merger of two neutron stars, which sometimes leads to a kilonova event. In 2017, such an event occurred, and the signals were detected here on Earth by both light-sensitive observatories like NASA's Fermi satellite, as well as the gravitational wave detectors LIGO and Virgo. Even though both light and gravitational waves were generated by this event, and they both travel at the same speed, the gravitational waves stopped arriving 1.7 seconds before the first light was seen. Science investigates the reason why." 


https://bigthink.com/starts-with-a-bang/light-gravitational-waves-arrive/

*****************************************************************************







In kilonovas, the temperature rises to an extremely high level. The high temperature means that the energy level in those impacts is very high. And that high energy impact turns gas and dust into the heaviest elements like gold and even uranium. There is always a dark matter ball or density around all gravitational centers. And in extremely high energy levels is possible. That the electromagnetic radiation interacts directly with dark matter. 

In those explosions, the electromagnetic wave movement turns so tight that it can push dark matter. In the "Flamingo"-image you can see the double-ring. Near very dense and heavy objects those double rings can be so high energy that they can push straight the dark matter. The reason why this model is interesting is that there is a black hole that is forming after a neutron star collision. And that massive gravitation slows light. 

So the reason why gravitational waves arrive on Earth before light could be that the gravitational wave source is in a different place than visible light. Another reason for that thing could be the pressure or shockwave that travels out from Kilonova. In that case, the shockwave forms a bubble that travels slower than light. In that case, the shockwave closes the light inside it. The shockwave will not close gravitational waves inside it. And that causes a situation, where light comes to Earth after the gravitational waves. 


https://bigthink.com/starts-with-a-bang/light-gravitational-waves-arrive/


https://interestingengineering.com/science/computer-simulation-universes-matter-mystery

Comments

Popular posts from this blog

Researchers think that the multiverse is not fiction anymore.

Multiverse means that our universe is one of many universes. The reason why researchers and scientists believe that this is true is that logical. About 50 years ago people didn't know that there were other solar systems. Exoplanets were only theories in the 80's.  About 400 years ago people thought that our Sun was the only star in the universe. Edvin Hubble proved that our galaxy, Milky Way is one of many galaxies. Then researchers found that galaxies form groups, and supergroups. That means that today we think that the universe, where we live is the ultimate supergroup of galactic supergroups. And logically thinking there should be other universes. We believe that the universe began its existence in an event or series of events called the Big Bang. That event did not begin, because the energy that formed material should come from somewhere. The Big Bang was not one "bang" or explosion. It was a series of events where material took form. Or the energy level that it h

Helium-3 production from tritium.

The fusion energy is theoretical level. The fusion systems are still at the laboratory level. That means there are many problems to overcome before commercial fusion systems. The fusion fuel can be produced from heavy water. The system bombs deuterium with neutrons. Or it can shoot deuterium or some other atoms against each other.  That can create neutron stripping, which transforms deuterium into tritium, and then the laser systems can increase the dividing speed of tritium. In that process, tritium transforms into Heluim-3 (3^He). If the system wants to produce Helium-3 for experimental or pulsed plasma rocket engines, that thing doesn't require that the Helium-3 production must be economical.  Hydrogen's heavy isotopes deuterium and tritium are the most promising fusion fuels. The problem is where the system can produce tritium or Helium3 for the fusion fuel. The 100 million K temperature allows two Heium-3 atoms can create fusion. There is the possibility to produce Hellium

Is some quantum version of the bubble pulse effect behind the dark energy?

  "Dark energy’s role in propelling the universe’s accelerated expansion presents a pivotal challenge in astrophysics, driving ongoing research and space missions dedicated to uncovering the nature of this mysterious force." (ScitechDaily, Deciphering the Dark: The Accelerating Universe and the Quest for Dark Energy)  Is the universe formed in energy projection? That traveled in some kind of space vacuum. That requires. That there was some kind of energy field before the Big Bang.  Quantum field is the common name of all power fields in the universe.  Is dark energy a gravitational version of the bubble pulse effect, that detonates submarines? In the bubble pulse effect, the bubble or some other projection. That travels in the larger bubble causing a very high explosive explosion. So could that effect be possible in electromagnetic and gravitational fields? Gravitational fields differ from electromagnetic fields because of their wavelength.  In some models, the double bubble,