Skip to main content

10 000 times quicker production speed will be a boost for medical nanorobots.



The 24-h process of stem cells attaching to the microrobot surface (top) and Cell staining results to identify cells attached to the microrobot surface (bottom). Credit: DGIST (Daegu Gyeongbuk Institute of Science and Technology) (Scitechdaily.com/10,000 Times Quicker: New Breakthrough Could Change the Field of Medical Microrobots)

Nanorobots are powerful tools. But the problem is how to control them and how to produce enough nanomachines. 

"There are many approaches to building microrobots with the goal of minimally invasive targeted precision treatment. The most popular of them is the ultra-fine 3D printing process known as the two-photon polymerization method, which triggers polymerization in synthetic resin by intersecting two lasers". (SciTechDaily.com/10,000 Times Quicker: New Breakthrough Could Change the Field of Medical Microrobots)

New production methods can increase microrobot production. And that can make medical nanorobots more common and effective. When the number of times when the nanorobots increases. Researchers can get more data and experience how to control those things. Microrobots are extremely powerful tools. 

They can carry medicals and things like stem cells to the right position in the human body. And they can also release medicines just at the right point in the human body. This thing makes it possible to create new types of medicals. Nanomachines can also remove tumors simply by cutting the cancer cells in pieces. But the problem is how to produce those systems. And another question is how to control those machines. 

DNA plasmids are a good tool for controlling organic nanomachines. When an organic nanorobot reaches the hostile cell there that system can simply push the enzyme fiber in that cell. And then that thing can destroy the targeted cells. In that kind of system, the fibers that it uses to move can equip by using some nutrients. That is only non-wanted cell use. The targeted cell will pull the nutrient inside it. 

And then that uncovers the enzyme that destroys the targeted cell. Or if the nanomachine is non-organic it can use kevlar fibers for that purpose. In that case, the kevlar fiber destroys the targeted cell. The abilities of nanomachines are limitless. But the problem is that they need new production methods. 

And another thing that is needed is a new thinking way. Building a large number of microchips and injecting them with bacteria is difficult. The DNA plasmid is a good tool for controlling the nano-size robot. But if somebody wants to create a chemical control code to control the miniature submarines that person must be careful. 

If there are some artifact base pairs. That thing can cause the nanorobot acts unexpectable. So researchers require more information so that they can make powerful and accurate tools for serving medical and other kinds of staff. 


https://scitechdaily.com/10000-times-quicker-new-breakthrough-could-change-the-field-of-medical-microrobots/


Images: https://scitechdaily.com/10000-times-quicker-new-breakthrough-could-change-the-field-of-medical-microrobots/

Comments

Popular posts from this blog

Researchers think that the multiverse is not fiction anymore.

Multiverse means that our universe is one of many universes. The reason why researchers and scientists believe that this is true is that logical. About 50 years ago people didn't know that there were other solar systems. Exoplanets were only theories in the 80's.  About 400 years ago people thought that our Sun was the only star in the universe. Edvin Hubble proved that our galaxy, Milky Way is one of many galaxies. Then researchers found that galaxies form groups, and supergroups. That means that today we think that the universe, where we live is the ultimate supergroup of galactic supergroups. And logically thinking there should be other universes. We believe that the universe began its existence in an event or series of events called the Big Bang. That event did not begin, because the energy that formed material should come from somewhere. The Big Bang was not one "bang" or explosion. It was a series of events where material took form. Or the energy level that it h

Helium-3 production from tritium.

The fusion energy is theoretical level. The fusion systems are still at the laboratory level. That means there are many problems to overcome before commercial fusion systems. The fusion fuel can be produced from heavy water. The system bombs deuterium with neutrons. Or it can shoot deuterium or some other atoms against each other.  That can create neutron stripping, which transforms deuterium into tritium, and then the laser systems can increase the dividing speed of tritium. In that process, tritium transforms into Heluim-3 (3^He). If the system wants to produce Helium-3 for experimental or pulsed plasma rocket engines, that thing doesn't require that the Helium-3 production must be economical.  Hydrogen's heavy isotopes deuterium and tritium are the most promising fusion fuels. The problem is where the system can produce tritium or Helium3 for the fusion fuel. The 100 million K temperature allows two Heium-3 atoms can create fusion. There is the possibility to produce Hellium

Is some quantum version of the bubble pulse effect behind the dark energy?

  "Dark energy’s role in propelling the universe’s accelerated expansion presents a pivotal challenge in astrophysics, driving ongoing research and space missions dedicated to uncovering the nature of this mysterious force." (ScitechDaily, Deciphering the Dark: The Accelerating Universe and the Quest for Dark Energy)  Is the universe formed in energy projection? That traveled in some kind of space vacuum. That requires. That there was some kind of energy field before the Big Bang.  Quantum field is the common name of all power fields in the universe.  Is dark energy a gravitational version of the bubble pulse effect, that detonates submarines? In the bubble pulse effect, the bubble or some other projection. That travels in the larger bubble causing a very high explosive explosion. So could that effect be possible in electromagnetic and gravitational fields? Gravitational fields differ from electromagnetic fields because of their wavelength.  In some models, the double bubble,