Skip to main content

Can the charm or c quark explain why a photon has no mass?


Can the mass of charm quark or c quark open the road to the photonic mystery? Can the reason why the c-quark that is inside the proton can be heavier than the proton? The c quark is a very heavy particle. That means its energy level is very high. 

That causes that c boson sends radiation with very high power. That radiation or wave motion pushes other particles away from it. And c quark flows above the energy level of other particles. When c quark sends enough radiation its shape turns into another particle.  

So could the same thing cause that photon has no mass? In that model, the photon would be in so a high energy level that it also pushes other particles and wave motion away from it. If that thing is right. The radiation of photons is so high that it will send the impacting radiation away from it.  In that case, dominating radiation will blow other radiation away. And that makes it difficult to measure the mass of the object. 

Otherwise, photons can turn wave motion without warning. Sir Isaac Newton proved that light is at the same time wave motion and particle. In that model, the scattering effect will cause that when the light in wave motion or superstring form hits another superstring it can turn into a photon. 

And the same way when a photon hits another photon or superstring. It can turn back to wave motion. That thing is an interaction where energy travels between superstrings and particles depending on which side of the impact has a higher energy level. 

If the wave motion hits the wall with a certain energy level there is the possibility that the wave motion will transfer energy to material with extremely high power. But the impact area of that wave motion or superstring is so small that it cannot interact. Or it's hard to measure the interaction. 

The reason for that is when the superstring travels through the quantum field. That raises the energy level of that field but during that interaction, the superstring itself doesn't make changes to that energy level. So the energy travels out from the quantum field after the energy stress. Not during that stress. The energy flows away from the particle when there is no incoming energy. At that moment energy comes out from the field because the system attempts to reach the minimum energy level. 

Comments

Popular posts from this blog

Researchers think that the multiverse is not fiction anymore.

Multiverse means that our universe is one of many universes. The reason why researchers and scientists believe that this is true is that logical. About 50 years ago people didn't know that there were other solar systems. Exoplanets were only theories in the 80's.  About 400 years ago people thought that our Sun was the only star in the universe. Edvin Hubble proved that our galaxy, Milky Way is one of many galaxies. Then researchers found that galaxies form groups, and supergroups. That means that today we think that the universe, where we live is the ultimate supergroup of galactic supergroups. And logically thinking there should be other universes. We believe that the universe began its existence in an event or series of events called the Big Bang. That event did not begin, because the energy that formed material should come from somewhere. The Big Bang was not one "bang" or explosion. It was a series of events where material took form. Or the energy level that it h...

Spinning cylinders prove a 50-year-old physics problem.

"Scientists at the University of Southampton have experimentally proven the Zel’dovich effect by amplifying electromagnetic waves using a spinning metal cylinder, confirming a theoretical prediction from the 1970s and opening new avenues in technology and quantum physics. Credit: SciTechDaily.com" (ScitechDaily, 50-Year-Old Physics Theory Proven for the First Time With Electromagnetic Waves) "“Colleagues and I successfully tested this theory in sound waves a few years ago, but until this most recent experiment, it hadn’t been proven with electromagnetic waves. Using relatively simple equipment – a resonant circuit interacting with a spinning metal cylinder – and by creating the specific conditions required, we have now been able to do this.” (ScitechDaily, 50-Year-Old Physics Theory Proven for the First Time With Electromagnetic Waves) Researchers amplified electromagnetic waves using spinning metal cylinders. That experiment proved the Sunyaev–Zeldovich, SZ effect, is v...

What makes it hard to create a room-temperature superconductor?

"The discovery of wave-like Cooper pairs in Kagome metals introduces a new era in superconductivity research, offering potential for innovative quantum devices and superconducting electronics, driven by theoretical predictions and recent experimental validations. Credit: SciTechDaily.com" (ScitechDaily, Kagome Metals Unlocked: A New Dimension of Superconductivity) "Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source" (Wikipedia, Superconductivity) Theoretically, a superconducting electric circu...