Skip to main content

The molecules offer new ways to create data security.


"Image depicting the control of polariton particles using electric-field tip-enhanced strong coupling spectroscopy. Credit: POSTECH" (ScitechDaily, Light-Matter Particle Breakthrough Could Change Displays Forever). The system can use the same method to create qubits. 


Light-particle interaction that can change displays forever can also make it possible to unlock a new way to create qubits. The system can make it possible to trap things like electrons between two layers. And then. The system can create the quantum entanglement between those electrons or maybe even atoms. 

The superposition between atoms is possible if the system can make a very accurate superposition between those atom's quantum fields. Or the system must just descramble information that it transports between atoms. 

In this image, you can see the energy hills and the system can make quantum entanglement between those hills. 

Holographic displays. That creates hovering holograms over them those holograms can used as optical communication tools. The system traps the qubit in those holograms. And then it transports information into them. The blinking holograms also offer the possibility to make an optical data network. 


"Scientists have discovered that molecules scramble quantum information at rates comparable to black holes, affecting chemical reactions and offering insights for controlling quantum computing systems. Credit: SciTechDaily.com" (ScitechDaily, Quantum Scrambling: Chemical Reactions Rivaling Black Holes)


Molecules offer impressive paths for data security. 


Researchers saw that molecules can scramble information as effectively as black holes. And that can make a big advance in quantum technology. If we think about the possibility of scrambling and descrambling information. We can say that a molecule twists information in a certain way. In that system, the information is like tangled woolen yarn. When the woolen yarn is tangled. It creates a structure that seems impossible to take in use. 

But if we have patience. We can turn those yarns into straight form. Same way molecules can entangle information. And then. The receiving system must just make the same actions that the encoding molecule made backward. 

We must understand that certain movements create this tangled structure. And to disentangle that mess, we should only make those movements backward. 


"Researchers have used neutron spectroscopy to uncover the unique, moonlander-like movement of triphenylphosphine on graphite, advancing our understanding of molecular motion and its applications in material science.Credit: TU Graz" (ScitechDaily, A Molecular Moonlander: PPh3’s Movement Challenges Conventional Science)


Moon lander molecules can used to create big advances in data security and nanotechnology. 


The molecular moon-lander that acts as a molecular-size USB  can improve data security. This molecule can hover over a graphite layer. And it can offer very interesting opportunities for data security and nanotechnology. 



The triphenylphosphine (PPh3) molecule offers a new way to secure data communication. The film shows how the molecule interacts with the layer. And when one part of it comes closer to the contact point, it can release data. That system is stored in it. This kind of thing can make chemical qubit possible. 

If there is a ring of metal atoms around the carbon ring. That system can store information in those atoms. Then the system can use that structure to turn the data row into data lines. 

That molecule can act like a miniature USB stick. And it can transport data between two layers. At least. If there are some metal atoms where the system can store information. The molecular moon lander can also operate as a tool for nanotechnology. And it can transport things like enzymes to precise points. The molecular moon lander as this molecule is called can also act as a miniature antenna. That scans the objects that are on the graphite or graphene layers. 


https://scitechdaily.com/a-molecular-moonlander-pph3s-movement-challenges-conventional-science/


https://scitechdaily.com/light-matter-particle-breakthrough-could-change-displays-forever/


https://scitechdaily.com/quantum-scrambling-chemical-reactions-rivaling-black-holes/


Comments

Popular posts from this blog

Researchers think that the multiverse is not fiction anymore.

Multiverse means that our universe is one of many universes. The reason why researchers and scientists believe that this is true is that logical. About 50 years ago people didn't know that there were other solar systems. Exoplanets were only theories in the 80's.  About 400 years ago people thought that our Sun was the only star in the universe. Edvin Hubble proved that our galaxy, Milky Way is one of many galaxies. Then researchers found that galaxies form groups, and supergroups. That means that today we think that the universe, where we live is the ultimate supergroup of galactic supergroups. And logically thinking there should be other universes. We believe that the universe began its existence in an event or series of events called the Big Bang. That event did not begin, because the energy that formed material should come from somewhere. The Big Bang was not one "bang" or explosion. It was a series of events where material took form. Or the energy level that it h...

Spinning cylinders prove a 50-year-old physics problem.

"Scientists at the University of Southampton have experimentally proven the Zel’dovich effect by amplifying electromagnetic waves using a spinning metal cylinder, confirming a theoretical prediction from the 1970s and opening new avenues in technology and quantum physics. Credit: SciTechDaily.com" (ScitechDaily, 50-Year-Old Physics Theory Proven for the First Time With Electromagnetic Waves) "“Colleagues and I successfully tested this theory in sound waves a few years ago, but until this most recent experiment, it hadn’t been proven with electromagnetic waves. Using relatively simple equipment – a resonant circuit interacting with a spinning metal cylinder – and by creating the specific conditions required, we have now been able to do this.” (ScitechDaily, 50-Year-Old Physics Theory Proven for the First Time With Electromagnetic Waves) Researchers amplified electromagnetic waves using spinning metal cylinders. That experiment proved the Sunyaev–Zeldovich, SZ effect, is v...

What makes it hard to create a room-temperature superconductor?

"The discovery of wave-like Cooper pairs in Kagome metals introduces a new era in superconductivity research, offering potential for innovative quantum devices and superconducting electronics, driven by theoretical predictions and recent experimental validations. Credit: SciTechDaily.com" (ScitechDaily, Kagome Metals Unlocked: A New Dimension of Superconductivity) "Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source" (Wikipedia, Superconductivity) Theoretically, a superconducting electric circu...