Skip to main content

Posts

Showing posts from September, 2024

CERN detected the decay of kaon.

"An ultra-rare particle decay process could broaden our understanding of how the building blocks of matter interact. Credit: SciTechDaily.com" (ScitechDaily, CERN’s Game Changer: Rare Decay Observation Hints at New Physics) "CERN scientists observed a rare kaon decay into a pion and two neutrinos, a significant find confirming predictions of the Standard Model and hinting at possible new physics."(ScitechDaily, CERN’s Game Changer: Rare Decay Observation Hints at New Physics) The decay of kaon into two neutrinos and one pion is one of the most incredible things in physics. That thing helps to understand particles and their formation. That decay follows the predictions of the Standard model and that is the path of the new era of physics. The kaon decay is one of the rarest things in history.  Mesons are unstable versions of hadrons. The most well-known stable versions of hadrons called baryons are protons and neutrons.  Kaon, or K-meson is one hadron. The mesons are

Nuclear reactions don't create energy. They release it from the bonds between particles.

  "The strong force plays a crucial role in particle physics by holding quarks together to form protons and neutrons, and these in turn to form nuclei. Credit: SciTechDaily.com" (ScitechDaily, Science Made Simple: What Is the Strong Nuclear Force?) "The strong force is essential in particle physics, binding subatomic particles like quarks into protons and neutrons, and these into nuclei, despite the repulsive electromagnetic force between like-charged protons." (ScitechDaily, Science Made Simple: What Is the Strong Nuclear Force?) "The strong force is essential in particle physics, binding subatomic particles like quarks into protons and neutrons, and these into nuclei, despite the repulsive electromagnetic force between like-charged protons." (ScitechDaily, Science Made Simple: What Is the Strong Nuclear Force?) The transportation particle of the strong nuclear force is gluon. Gluon is a smaller particle than W and Z bosons and electrons. When gluon sends

What makes it hard to create a room-temperature superconductor?

"The discovery of wave-like Cooper pairs in Kagome metals introduces a new era in superconductivity research, offering potential for innovative quantum devices and superconducting electronics, driven by theoretical predictions and recent experimental validations. Credit: SciTechDaily.com" (ScitechDaily, Kagome Metals Unlocked: A New Dimension of Superconductivity) "Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source" (Wikipedia, Superconductivity) Theoretically, a superconducting electric circu

Spinning cylinders prove a 50-year-old physics problem.

"Scientists at the University of Southampton have experimentally proven the Zel’dovich effect by amplifying electromagnetic waves using a spinning metal cylinder, confirming a theoretical prediction from the 1970s and opening new avenues in technology and quantum physics. Credit: SciTechDaily.com" (ScitechDaily, 50-Year-Old Physics Theory Proven for the First Time With Electromagnetic Waves) "“Colleagues and I successfully tested this theory in sound waves a few years ago, but until this most recent experiment, it hadn’t been proven with electromagnetic waves. Using relatively simple equipment – a resonant circuit interacting with a spinning metal cylinder – and by creating the specific conditions required, we have now been able to do this.” (ScitechDaily, 50-Year-Old Physics Theory Proven for the First Time With Electromagnetic Waves) Researchers amplified electromagnetic waves using spinning metal cylinders. That experiment proved the Sunyaev–Zeldovich, SZ effect, is v

The new systems can detect single gravitons.

"A team led by Stevens professor Igor Pikovski has proposed a way to detect single gravitons, the quantum particles of gravity, using advanced quantum sensing technology. Their research suggests this long-thought-impossible experiment may soon become feasible with future technological advancements. Credit: SciTechDaily.com" ScitechDaily, Thought To Be Impossible: Scientists Propose Groundbreaking Method To Detect Single Gravitons) Researchers detected the graviton-looking particles in quantum experiments. In those experiments, they measured EM interactions with semiconducting materials. Researchers took those tests at three universities. "A team of scientists from Columbia, Nanjing University, Princeton, and the University of Munster, writing in the journal Nature, have presented the first experimental evidence of collective excitations with spin called chiral graviton modes (CGMs) in a semiconducting material." (ScitechDaily, From Theory to Reality: Graviton-like P