Skip to main content

Neutron stars can involve dark matter.



Researchers use supermassive and massive objects to observe the dark matter. The dark matter is the gravitational effect, and researchers use things like galactic clusters to see how the dark matter bends the light. Researchers calculate how much those objects should weigh. Then they, see how much the object turns or blends the light in the gravity lens. That tells what is the real mass of the object. 

In some models dark matter or weakly interacting massive particles (WIMP) are inside all or some other particles. The idea for that is from the observation that protons involved charm quark. The charm quark is a more massive particle than a proton. That gave the idea that the charm quark might hover in protons. And the next idea was this. Maybe dark matter's WIMP particle hovers in some other particle. 

Because dark matter interacts with gravity as well as visible material. Researchers should find dark matter near massive objects or gravity centers. The thing that makes this mysterious gravity effect interesting is that, theoretically, the material can turn invisible, and dark matter is only one state of matter. But is it real material or is it some kind of virtual material? 


Above: Neutron is a composition of 1 up quark and 2 down quarks.


Above: Proton is a composition of 1 down quark and 2 up quarks.

The "lone quark" model: 


Protons involve two up quarks and one down quark. Neutron has two down quarks and one up quark. If that lone quark turns into its anti-quark material may turn invisible. 

It's possible that the up quark can transform into its antiquark in neurons, or the down quark can transform into its antiquark in the protons. That causes a situation in which the antiquark cannot find its mirror particle. In that model, the lone quark's transformation turns the material dark. 

In some models, there is the possibility that all other particles can create similar holes with electrons. The electron-hole is a positive point in the electron orbital. It's possible. Researchers can apply this model to eight color states in gluons. 

So can the quarks and gluons have similar abilities with electrons? In that case, the gluon or quark quantum charge can turn opposite. So the color charges or color states act like electricity in, and between electrons. And that means the gluon can create similar holes with electrons. 

Theoretically, a quark can form a quark hole when the quark turns into its antiquark. And if the antiquark cannot interact with its opposite or mirror quark there is no annihilation. Annihilation is possible only when a particle interacts with its mirror particle. 

And if the down quark transforms into its mirror particle in proton, or the up quark can transform into its antiparticle in neutrons it's possible. That the anti-up or anti-down quark doesn't find its mirror particle. And there should not happen an annihilation. 

In some other models, the charm quark in the proton can turn into an anti-charm quark. The charm quark hovers in the protons, and if that thing turns into an anti-charm quark, it might not find the mirror particle. But then another question is, can this thing turn material into dark? 


https://phys.org/news/2024-03-physicists-dark-small-scale-solution.html


https://en.wikipedia.org/wiki/Gluon


https://en.wikipedia.org/wiki/Gravitational_lens


https://en.wikipedia.org/wiki/Neutron


https://en.wikipedia.org/wiki/Proton


https://en.wikipedia.org/wiki/Quark


https://en.wikipedia.org/wiki/Weakly_interacting_massive_particle

Comments

Popular posts from this blog

Researchers think that the multiverse is not fiction anymore.

Multiverse means that our universe is one of many universes. The reason why researchers and scientists believe that this is true is that logical. About 50 years ago people didn't know that there were other solar systems. Exoplanets were only theories in the 80's.  About 400 years ago people thought that our Sun was the only star in the universe. Edvin Hubble proved that our galaxy, Milky Way is one of many galaxies. Then researchers found that galaxies form groups, and supergroups. That means that today we think that the universe, where we live is the ultimate supergroup of galactic supergroups. And logically thinking there should be other universes. We believe that the universe began its existence in an event or series of events called the Big Bang. That event did not begin, because the energy that formed material should come from somewhere. The Big Bang was not one "bang" or explosion. It was a series of events where material took form. Or the energy level that it h

Helium-3 production from tritium.

The fusion energy is theoretical level. The fusion systems are still at the laboratory level. That means there are many problems to overcome before commercial fusion systems. The fusion fuel can be produced from heavy water. The system bombs deuterium with neutrons. Or it can shoot deuterium or some other atoms against each other.  That can create neutron stripping, which transforms deuterium into tritium, and then the laser systems can increase the dividing speed of tritium. In that process, tritium transforms into Heluim-3 (3^He). If the system wants to produce Helium-3 for experimental or pulsed plasma rocket engines, that thing doesn't require that the Helium-3 production must be economical.  Hydrogen's heavy isotopes deuterium and tritium are the most promising fusion fuels. The problem is where the system can produce tritium or Helium3 for the fusion fuel. The 100 million K temperature allows two Heium-3 atoms can create fusion. There is the possibility to produce Hellium

Is some quantum version of the bubble pulse effect behind the dark energy?

  "Dark energy’s role in propelling the universe’s accelerated expansion presents a pivotal challenge in astrophysics, driving ongoing research and space missions dedicated to uncovering the nature of this mysterious force." (ScitechDaily, Deciphering the Dark: The Accelerating Universe and the Quest for Dark Energy)  Is the universe formed in energy projection? That traveled in some kind of space vacuum. That requires. That there was some kind of energy field before the Big Bang.  Quantum field is the common name of all power fields in the universe.  Is dark energy a gravitational version of the bubble pulse effect, that detonates submarines? In the bubble pulse effect, the bubble or some other projection. That travels in the larger bubble causing a very high explosive explosion. So could that effect be possible in electromagnetic and gravitational fields? Gravitational fields differ from electromagnetic fields because of their wavelength.  In some models, the double bubble,